Learning From Nature to Make Machines See and Robots Walk

Ralph Etienne-Cummings
Dept. of Electrical and Computer Engineering
Johns Hopkins University
Nature’s Inspiration

Antoni Gaudi, *Casa Mila*, 1906 - 1910

After wikipedia.com
Nature’s Inspiration

Carver Mead, Neuromorphic Circuits, 1986 - 1990

After wikipedia.com
The Big Picture: Motivation

Developing Biomorphic Robotics

Restoring function after limb amputation

Adaptive Biomorphic Circuits & Systems

Restoring function after severe spinal cord injury
Presentation Outline

Making Machines See
- The biological visual system
- Silicon eyes and brains

Making Robots Walk
- The biological locomotion system
- Silicon spine and Walking robots

Restoring Function to the Impaired
- Spinal cord injury and locomotion prosthesis
- Gait controller: *silicon model of spinal cord circuits*
- Phase controller: *controlling Behavior*

Future and Conclusion
- High degree of freedom prosthetic limbs
- Sensory feedback and haptics
Learning from Nature to Make Machines See
Visual Processing in Humans

MT
Retina = Camera
LGN = “Relay”
Visual Cortex:
Shape, Color, Object, Motion, Stereo Vision

After wikipedia.com
Front-End of Vision System: Photoreception in the Retina

Rods and Cones

Source unknown
Conventional CMOS Cameras: Integrative Photo-detection

150 million sold in 2004, 55% annual growth rate to >700 million by 2008

Power consumption is relatively low (~ 10’s of mW for VGA)

2 Mega Pixels is probably the limit of usefulness

Download bandwidth is a problem (service providers would like more people to download their pictures)

There is a fear that it will represent the next technology bubble So much hype, legal problems ...

Small (~ 100 x 100 pixels) imagers, with smarts (e.g. motion, color processing) have market in toys, sensor networks, computer optical mouse ...
Conventional CMOS Cameras:
Voltage Mode Active Pixel Camera

Integrative Imagers:
Voltage domain; Dense arrays; Low Noise;
Low dynamic range, Not ideal for computation

Simple APS: Fossum, 1992
Current Active Pixel Sensor

Integrating Current output

\(V_{\text{reset}} \leq V_{DD} - |V_{tP}| \)

\(V_{col} \approx V_{DD} - 0.2V \)

\[
I_{\text{pix}} \approx \frac{W_2}{L_2} k_p (V_{DD} - |V_{tP}| - V_{\text{pix}}) (V_{DD} - V_{col})
\]

\[
I_{\text{pix}} \propto -V_{\text{pix}} (V_{DD} - V_{col})
\]

\[
I_{\text{pix}} \propto -V_{\text{pix}} \propto \text{Light} \times \text{Time}
\]

Philipp et al, 2008
Improved Current Mode Photodetection

Image quality has been improved
Non-linearity due to mobility degradation degrades performance under bright light

Philipp et al, 2008
Spike-Based CMOS Cameras: Octopus

Imaging Concept

Sample Image

Other approaches:
- J. Harris, “Time to first Spike,” 2002

Culurciello, Etienne-Cummings & Boahen, 2003
APS-Based Difference Imagers
On-Set and Off-Set Imaging

Narrow Rejection Band

Chi et al., 2007
Color Processing: RGB to HSI: Why?

Desaturated Color

Saturated Color

White

Blue

Red

Green

Black

Additive shift

Multiplicative shift

\[r = I_{\text{bias}} \frac{R}{R + G + B}; g = I_{\text{bias}} \frac{G}{R + G + B}; b = I_{\text{bias}} \frac{B}{R + G + B} \]

\[\text{Sat}(R, G, B) = I_{\text{bias}}[1 - \min(r, g, b)] \]

\[\text{Hue}(R, G, B) = \arctan(X / Y) = \arctan\left(\frac{0.866(G - B)}{2R - G - B} \right) \]

Etienne-Cummings et al., 2002
Examples: Chroma-Based Object Identification

Skin Identification

“Learned” templates

Fruit Identification

Etienne-Cummings et al., 2002
Coke or Pepsi?

Etienne-Cummings et al., 2002

\[SAD = \sum_{\Theta} |I_{i,j} - T_{i,j,k}| < \lambda_k \]
Single-chip stereo (3D) vision system

For use in:

- Autonomous systems
- Vehicle navigation
- Man-machine interfaces

Requirements

- Fully integrated
- Digital output
- Low power

Replaced with

Philipp et al., 2006
Chip Architecture

- Vertical averaging
 - Select multiple rows

- Parallel computation

- SAD matching metric

- Loser-Take-All
 - Smallest SAD value

\[SAD(x, y, d) = \sum_{i=x}^{x+14} \left| r_{sum}(i, y) - l_{sum}(i + d, y) \right| \]

\[\Delta_x(x, y) = \arg\min_{d \in D} SAD(x, y, d) \]

Philipp et al., 2006
Chip Characteristics

<table>
<thead>
<tr>
<th>Technology</th>
<th>0.35µm 4M2P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Size</td>
<td>3.5mm x 3.3mm</td>
</tr>
<tr>
<td>Pixel Size</td>
<td>10µm x 10µm</td>
</tr>
<tr>
<td>Fill Factor</td>
<td>26%</td>
</tr>
<tr>
<td>Image FPN</td>
<td>1.2% (no CDS)</td>
</tr>
<tr>
<td>Imager Size</td>
<td>128 x 128 x 2</td>
</tr>
<tr>
<td>Depth Map Size</td>
<td>114 x 124</td>
</tr>
<tr>
<td>Frame Rate</td>
<td>30fps (40fps max)</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>33.2mW (3.3V, 30fps)</td>
</tr>
</tbody>
</table>

Philipp et al., 2006
Results

Movie: 30fps @ 33.2mW
- Right imager output texture mapped to depth results
- Color (at lower right) corresponds to depth
- Note: Plateau under the tiger is a black table
Presentation Outline

Making Machines See
- The biological visual system
- Silicon eyes and brains

Making Robots Walk
- The biological locomotion system
- Silicon spine and Walking robots

Restoring Function to the Impaired
- Spinal cord injury and locomotion prosthesis
- Gait controller: *silicon model of spinal cord circuits*
- Phase controller: *controlling Behavior*

Future and Conclusion
- High degree of freedom prosthetic limbs
- Sensory feedback and haptics
Learning from Nature to Robots
Walk
Central Pattern Generator (CPG)

- In the spinal cord of vertebrates
- Generate patterned outputs to activate muscles
- Motor systems with regular, periodic activity (breathing, chewing, locomotion, etc.)
- Architecture is preserved across species [Cohen et al., 1988]
- CPG is used for “periodic” not specialized, locomotion

Source: J. M. Cleese, MPFC, 1970
CPG Architecture

First conceptual “model” in 1911 by T. G. Brown: half-center oscillator

HCO structure preserved in modern models
Cellular models in primitive vertebrates
Models in higher vertebrates are less detailed; designed to match behavioral data

Source: Grillner, Nat Rev Neurosci, 2003
Source: Rybak et al., J Physiol, 2006
CPGs in Action

Source: Mellen et al., 1995; Grillner & Zangger, 1984; Dimitriavic & Minassian et al., 2004
Cat Walking

IF-THEN formulation of “rules” governing hind limb stepping in cats:

- **Stance-to-swing transitions:**
 - *IF* ipsilateral hip is extended
 - *AND* ipsilateral limb is unloaded
 - *AND* contralateral limb is bearing weight
 - *THEN* initiate flexion in the ipsilateral limb

- **Swing-to-stance transitions:**
 - *IF* ipsilateral hip is flexed
 - *THEN* initiate extension in the ipsilateral limb

Ekeberg and Pearson, J Neurophys, 2005

Saigal et al., 2004; Prochazka, 1996; Guevremont et al., 2007
Designing the Gait Controller’s CPG Network

- Patterns in normal walking and IF-THEN formulation provides basis for CPG network
- Incremental design process
 - Extensors and flexors in counterphase
 - Alternate between stance (extension) and swing (flexion) phases ~ 70-30 duty cycle
 - Stance to swing and vice-versa triggered by two main proprioceptive inputs
 - Hip angle
 - Ankle load
- Extensible: replace flexor and extensor neurons with hip/knee/ankle subpopulations
- Structure similar to biology-based models [Pearson, personal comm.]

Source: Vogelstein et al., *IEEE TBioCAS*, 2008
Hardware Development: Gait Controller

- Develop hardware system to prescribe motor output based on pre-defined gait and current sensorimotor state
- Need to know what the biological CPG is doing at all times and what we want it to do next in order to effectively control it
- Build a silicon model of biological CPG, i.e. a neuromorphic silicon CPG chip (SiCPG)

CPGv2 (Tenore et al., 2004)
CPGv3 (Tenore et al., 2006)
Which Neuron Model?

Making a Robot Walk with CPG Chip

- Use artificial motor system to develop on-line phase control infrastructure

Materials:
- Partially-supported bipedal robot ("RedBot") or RoboCat
- Reconfigurable silicon CPG chip
 - CPG controls hip movements, knee/ankles are passive

Lewis et al., 2005; Russell, Orchard et al, 2007
When Coupling Goes Good & Bad

Baby Steps

Strauss

Night on Town

Hurdles
Presentation Outline

Making Machines See
 - The biological visual system
 - Silicon eyes and brains

Making Robots Walk
 - The biological locomotion system
 - Silicon spine and Walking robots

Restoring Function to the Impaired
 - Spinal cord injury and locomotion prosthesis
 - Gait controller: *silicon model of spinal cord circuits*

Future and Conclusion
 - High degree of freedom prosthetic limbs
 - Sensory feedback and haptics
Restoring Function to the Impaired
Spinal Cord Injury (SCI)

- SCI is usually a focal injury: vertebral body dislocation → spinal cord contusion
 - Kills spinal cord cells at lesion site
 - Severs connections
 - Leaves cells above/below lesion intact
- In most cases (~65%), lower limb CPG is intact after SCI
- Paralysis is caused by loss of descending control of the CPG, not by loss of CPG itself
 - Tonic & phasic inputs to CPG are disconnected
 - Efferent inputs required to activate CPG and control locomotion
 - Paralysis
Responsibilities of Locomotion Controller

1. **Select Gait**
 + specify desired motor output
 - phase relationships
 - joint angles

2. **Activate CPG**
 + tonic stimulation initiates locomotion
 - epidural spinal cord stimulation (ESCS)
 - intraspinal microstimulation (ISMS)

3. **Generate “Efferent Copy”**
 + monitor sensorimotor state
 - external sensors on limbs
 - internal afferent recordings

4. **Control Output of CPG**
 + phasic stimulation
 (efferent copy required for precisely-timed stimuli)
 - convert baseline CPG activity into functional motor output
 - correct deviations
 - adjust individual components
 - adapt output to environment

Vogelstein et al., 2008
12 pairs of IM electrodes: 3 each for left/right hip, knee, and ankle extensors/flexors

Two types of sensory data were collected for each leg
- Hip angle (HA)
- Ground reaction force (GRF)

Source: Vogelstein et al., IEEE TBioCAS, (submitted)
Results: SiCPG Chip Controls Locomotion in a Paralyzed Cat

Vogelstein et al., 2008
Results: SiCPG Chip Controls Locomotion in a Paralyzed Cat

We have also shown that turning control is possible using phasic stimulation of biological CPG

- Use error between desired activity = “efferent copy” and measured activity to stimulate spine

Vogelstein et al., 2008
Making Machines See
- The biological visual system
- Silicon eyes and brains

Making Robots Walk
- The biological locomotion system
- Silicon spine and Walking robots

Restoring Function to the Impaired
- Spinal cord injury and locomotion prosthesis
- Gait controller: *silicon model of spinal cord circuits*

Future and Conclusion
- High degree of freedom prosthetic limbs
- Sensory feedback and haptics
Control paradigm

- Acquisition of electrophysiological signals involved in generation of movement
- Extraction of movement-related information from biosignals
- Provide sensory information to the nervous system
State-of-the-art of Prosthetic Hands

JHU/APL RP2009 Prototype II Hand
Repetitive movements: Hand opening/closing

Tenore et al., 2008
Experimental protocol

- Acquisition of non-invasive surface EMG signals from forearm (and upper arm)
- Subjects perform finger and hand movements on cue (audiovisual) – 18 total
- Transradial amputees perform movements also with intact hand simultaneously

Tenore et al., 2007
Results

- 4 subjects, 12 movements
 - 32 electrodes able-bodied subjects,
 - 19 electrodes on transradial amputee
- Confusion matrices: allow identification of misclassified movements
- Transradial amputee is?

Tenore et al., 2008
Visualization on Virtual Integration Environment

- VIE provided by JHUAPL for fast prototyping of decoding algorithms
- VIE in action
- Real Time Decoding

Tenore et al., 2008
Conclusions and Future

Fully neurally integrated prosthetics

- **Thoughts** to action (decoding of intent)
- Sensors to **feeling** (encoding of reaction)
- **Knowing** where is the limb (representing joint space)

Lucas Films, 1978
Acknowledgements

- Various ONR Awards
- Various NIH Awards & Neuroengineering Training Grant
- Various individual NFS Awards
- NSF Graduate Research Fellowships
- DARPA Revolutionizing Prosthetics
- Telluride Neuromorphic Engineering Workshop
- NSF ERC CISST at JHU
- Various AFRL and ARL Awards